On the isomorphism problem for Helly circular-arc graphs
نویسندگان
چکیده
منابع مشابه
On the Isomorphism Problem for Helly Circular-Arc Graphs
The isomorphism problem is known to be efficiently solvable for interval graphs, while for the larger class of circular-arc graphs its complexity status stays open. We consider the intermediate class of intersection graphs for families of circular arcs that satisfy the Helly property. We solve the isomorphism problem for this class in logarithmic space. If an input graph has a Helly circular-ar...
متن کاملProper Helly Circular-Arc Graphs
A circular-arc model M = (C,A) is a circle C together with a collection A of arcs of C. If no arc is contained in any other then M is a proper circular-arc model, if every arc has the same length then M is a unit circular-arc model and if A satisfies the Helly Property then M is a Helly circular-arc model. A (proper) (unit) (Helly) circular-arc graph is the intersection graph of the arcs of a (...
متن کاملClique graphs of Helly circular arc graphs
Abstract: Clique graphs of several classes of graphs have been already characterized. Trees, interval graphs, chordal graphs, block graphs, clique-Helly graphs are some of them. However, no characterization of clique graphs of circular-arc graphs and some of their subclasses is known. In this paper, we present a characterization theorem of clique graphs of Helly circular-arc graphs and prove th...
متن کاملSelf-clique Helly circular-arc graphs
A clique in a graph is a complete subgraph maximal under inclusion. The clique graph of a graph is the intersection graph of its cliques. A graph is self-clique when it is isomorphic to its clique graph. A circular-arc graph is the intersection graph of a family of arcs of a circle. A Helly circular-arc graph is a circular-arc graph admitting a model whose arcs satisfy the Helly property. In th...
متن کاملEssential obstacles to Helly circular-arc graphs
A Helly circular-arc graph is the intersection graph of a set of arcs on a circle having the Helly property. We introduce essential obstacles, which are a refinement of the notion of obstacles, and prove that essential obstacles are precisely the minimal forbidden induced circular-arc subgraphs for the class of Helly circular-arc graphs. We show that it is possible to find in linear time, in an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Information and Computation
سال: 2016
ISSN: 0890-5401
DOI: 10.1016/j.ic.2016.01.006